Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-[(4-Chlorophenyl)(hydroxy)methyl]-5,5-dimethyl-1,3,2-dioxaphosphinan-2one

Chubei Wang, Hao Peng and Hongwu He*

Key Laboratory of Pesticide and Chemical Biology, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China. Correspondence e-mail: he1208@mail.ccnu.edu.cn

Received 4 March 2011; accepted 9 March 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.062; wR factor = 0.154; data-to-parameter ratio = 20.9.

In the title compound, C₁₂H₁₆ClO₄P, the phosphonate ring adopts a chair conformation. In the crystal, intermolecular $O-H \cdots O$ hydrogen bonds link the molecules into chains propagating along the b axis.

Related literature

For the synthesis of hydroxyphosphonates, see: Zhou et al. (2008). For the synthesis and biological activity of hydroxyphosphonate derivatives, see: Peng et al. (2007); Liu et al. (2006). For standard bond lengths, see: Allen et al. (1987).

Experimental

Crystal data

C12H16ClO4P
$M_r = 290.67$
Monoclinic, $P2_1/c$
a = 12.8965 (11) Å
<i>b</i> = 9.4449 (8) Å
c = 11.6425 (10) Å
$\beta = 98.630 \ (1)^{\circ}$

V = 1402.1 (2) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.39 \text{ mm}^{-1}$ T = 298 K $0.23\,\times\,0.16\,\times\,0.12$ mm

Data collection

Bruker SMART APEX CCD area-3463 independent reflections detector diffractometer 3141 reflections with $I > 2\sigma(I)$ 10123 measured reflections $R_{\rm int} = 0.071$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.062$	166 parameters
$wR(F^2) = 0.154$	H-atom parameters constrained
S = 1.15	$\Delta \rho_{\rm max} = 0.72 \text{ e} \text{ \AA}^{-3}$
3463 reflections	$\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O4-H4\cdots O3^i$	0.82	1.89	2.705 (3)	172
Symmetry code: (i)	$-x, y - \frac{1}{2}, -z +$	1		· · · ·

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

We gratefully acknowledge financial support of this work by the National Basic Research Program of China (2010CB126100) and the National Natural Science Foundation of China (Nos. 20772042, 21002037). This work was supported in part by the PCSIRT (No. IRT0953).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2424).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (2001). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Liu, H., Zhou, Y. G., Yu, Z. K., Xiao, W. J., Liu, S. H. & He, H. W. (2006). Tetrahedron Lett. 62, 11207-11217.
- Peng, H., Wang, T., Xie, P., Chen, T., He, H. W. & Wan, J. (2007). J. Agric. Food Chem. 55, 1871-1880.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Zhou, X., Liu, X. H., Yang, X., Shang, D. J., Xin, J. G. & Feng, X. M. (2008). Angew. Chem. Int. Ed. 47, 392-394.

supplementary materials

Acta Cryst. (2011). E67, o926 [doi:10.1107/S1600536811008944]

2-[(4-Chlorophenyl)(hydroxy)methyl]-5,5-dimethyl-1,3,2-dioxaphosphinan-2-one

C. Wang, H. Peng and H. He

Comment

Acyclic alpha-hydroxyphosphonates and cyclic alpha-hydroxyphosphonates can be used as very convenient intermediates. They are also an attractive class of biologically active compounds (Peng *et al.*, 2007; Liu *et al.*, 2006). In our research work aimed at searching for novel agrochemicals, we have attempted to synthesize hydroxyphosphonate derivatives using literature procedures. Here we report the crystal structure of the title compound (Fig. 1). The bond lengths (Allen *et al.*, 1987) and angles show normal values. The crystal structure is stabilized by intermolecular O—H…O hydrogen bonds (Table 1, Fig. 2).

Experimental

The title compound was prepared according to literature procedures (Zhou *et al.* 2008). 4-Chlorobenzaldehyde (10 mmol) was added to a solution of 5,5-dimethyl-1,3,2-dioxaphosphinane (10 mmol) in triethylamine (10 mmol). The mixture was stirred at room temperature for 20 h. Pure title compound was afforded by column chromatography on silica gel (acetone/ petroleum ether 1:2). Recrystallization from ethyl acetate over a period of one week gave colourless crystals of the title compound.

Refinement

C-bound H atoms and the O-bound H atom were geometrically positioned (C—H 0.93–0.97 Å, O—H = 0.82 Å) and refined as riding, with $U_{iso}(H) = kU_{eq}(C, O)$, where k = 1.5 for methyl H and OH and 1.2 for other H atoms.

Figures

Fig. 1. Molecular structure of the title compound, with displacement parameters drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

Fig. 2. Part of the crystal packing, showing the intermolecular hydrogen bonds as dashed lines.

2-[(4-Chlorophenyl)(hydroxy)methyl]-5,5-dimethyl-1,3,2-dioxaphosphinan-2-one

Crystal data	
C ₁₂ H ₁₆ ClO ₄ P	F(000) = 608
$M_r = 290.67$	$D_{\rm x} = 1.377 \ {\rm Mg \ m^{-3}}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
<i>a</i> = 12.8965 (11) Å	Cell parameters from 4935 reflections
b = 9.4449 (8) Å	$\theta = 2.7 - 28.2^{\circ}$
c = 11.6425 (10) Å	$\mu = 0.39 \text{ mm}^{-1}$
$\beta = 98.630 \ (1)^{\circ}$	T = 298 K
$V = 1402.1 (2) \text{ Å}^3$	Block, colourless
Z = 4	$0.23 \times 0.16 \times 0.12 \text{ mm}$

Data collection

Bruker SMART APEX CCD area-detector diffractometer	3141 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.071$
graphite	$\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$
φ and ω scans	$h = -13 \rightarrow 17$
10123 measured reflections	$k = -9 \rightarrow 12$
3463 independent reflections	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.062$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.154$	H-atom parameters constrained
<i>S</i> = 1.15	$w = 1/[\sigma^2(F_o^2) + (0.0581P)^2 + 0.7742P]$ where $P = (F_o^2 + 2F_c^2)/3$
3463 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
166 parameters	$\Delta \rho_{max} = 0.72 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.28 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
C1	0.2944 (2)	0.3005 (3)	0.5354 (2)	0.0543 (6)
H1A	0.2923	0.3256	0.6150	0.081*
H1B	0.3596	0.3312	0.5135	0.081*
H1C	0.2883	0.1996	0.5267	0.081*
C2	0.2096 (3)	0.5330 (3)	0.4720 (3)	0.0635 (8)
H2A	0.1547	0.5765	0.4188	0.095*
H2B	0.2764	0.5659	0.4561	0.095*
H2C	0.2014	0.5577	0.5501	0.095*
C3	0.2035 (2)	0.3720 (2)	0.4576 (2)	0.0407 (5)
C4	0.2059 (2)	0.3377 (2)	0.3303 (2)	0.0430 (5)
H4A	0.1519	0.3917	0.2823	0.052*
H4B	0.2733	0.3655	0.3099	0.052*
C5	0.09896 (19)	0.3251 (2)	0.4897 (2)	0.0429 (5)
H5A	0.0971	0.3465	0.5708	0.052*
H5B	0.0428	0.3773	0.4434	0.052*
C6	0.12155 (17)	-0.0698 (2)	0.36460 (19)	0.0359 (4)
Н6	0.0632	-0.1171	0.3939	0.043*
C7	0.21964 (16)	-0.09498 (19)	0.44979 (18)	0.0330 (4)
C8	0.31652 (19)	-0.1076 (3)	0.4118 (2)	0.0432 (5)
H8	0.3212	-0.0978	0.3333	0.052*
С9	0.4058 (2)	-0.1346 (3)	0.4902 (3)	0.0550 (6)
H9	0.4705	-0.1435	0.4647	0.066*
C10	0.3983 (2)	-0.1482 (3)	0.6055 (3)	0.0554 (7)
C11	0.3035 (2)	-0.1347 (3)	0.6457 (2)	0.0509 (6)
H11	0.2996	-0.1430	0.7245	0.061*
C12	0.21483 (19)	-0.1088 (2)	0.5673 (2)	0.0422 (5)
H12	0.1505	-0.1004	0.5936	0.051*
Cl1	0.51070 (8)	-0.18286 (16)	0.70446 (9)	0.1062 (4)
01	0.18909 (13)	0.18663 (16)	0.30702 (13)	0.0403 (4)
02	0.08252 (12)	0.17262 (17)	0.46986 (13)	0.0402 (4)
03	-0.00798 (14)	0.1404 (2)	0.26116 (16)	0.0537 (5)
O4	0.12788 (16)	-0.12340 (19)	0.25263 (15)	0.0526 (5)
H4	0.0926	-0.1957	0.2418	0.079*
P1	0.08858 (4)	0.11632 (6)	0.34372 (5)	0.03362 (17)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0489 (14)	0.0561 (16)	0.0541 (14)	-0.0019 (12)	-0.0045 (11)	0.0008 (12)

supplementary materials

C2	0.088 (2)	0.0332 (12)	0.0674 (17)	-0.0063 (13)	0.0042 (16)	-0.0104 (12)
C3	0.0505 (13)	0.0286 (10)	0.0416 (11)	-0.0025 (9)	0.0024 (10)	-0.0031 (8)
C4	0.0560 (14)	0.0298 (10)	0.0439 (12)	-0.0069 (10)	0.0099 (10)	0.0024 (9)
C5	0.0511 (13)	0.0373 (11)	0.0411 (11)	0.0065 (10)	0.0093 (10)	-0.0078 (9)
C6	0.0345 (10)	0.0291 (9)	0.0438 (11)	-0.0071 (8)	0.0048 (8)	-0.0022 (8)
C7	0.0356 (10)	0.0188 (8)	0.0442 (11)	-0.0014 (7)	0.0045 (8)	0.0004 (7)
C8	0.0402 (12)	0.0439 (12)	0.0463 (12)	-0.0019 (10)	0.0096 (10)	0.0011 (10)
C9	0.0366 (12)	0.0619 (17)	0.0668 (16)	0.0031 (11)	0.0087 (11)	0.0032 (13)
C10	0.0442 (14)	0.0571 (16)	0.0606 (16)	0.0052 (12)	-0.0060 (11)	0.0079 (13)
C11	0.0615 (16)	0.0483 (14)	0.0421 (12)	0.0045 (12)	0.0049 (11)	0.0084 (10)
C12	0.0419 (12)	0.0384 (12)	0.0476 (12)	0.0039 (9)	0.0114 (10)	0.0043 (9)
Cl1	0.0629 (6)	0.1541 (11)	0.0912 (7)	0.0175 (6)	-0.0221 (5)	0.0266 (7)
01	0.0520 (9)	0.0310 (8)	0.0412 (8)	-0.0050 (7)	0.0175 (7)	-0.0022 (6)
O2	0.0435 (9)	0.0373 (8)	0.0423 (8)	0.0009 (7)	0.0150 (7)	-0.0016 (6)
O3	0.0485 (10)	0.0528 (10)	0.0546 (10)	0.0105 (8)	-0.0089 (8)	0.0022 (8)
O4	0.0622 (12)	0.0444 (10)	0.0503 (10)	-0.0086 (8)	0.0054 (8)	-0.0130 (8)
P1	0.0342 (3)	0.0304 (3)	0.0358 (3)	0.0021 (2)	0.0039 (2)	0.0004 (2)

Geometric parameters (Å, °)

C1—C3	1.528 (3)	C6—P1	1.816 (2)
C1—H1A	0.9600	С6—Н6	0.9800
C1—H1B	0.9600	C7—C12	1.385 (3)
C1—H1C	0.9600	С7—С8	1.392 (3)
C2—C3	1.530 (3)	C8—C9	1.382 (3)
C2—H2A	0.9600	С8—Н8	0.9300
С2—Н2В	0.9600	C9—C10	1.367 (4)
C2—H2C	0.9600	С9—Н9	0.9300
C3—C5	1.518 (3)	C10—C11	1.379 (4)
C3—C4	1.522 (3)	C10—Cl1	1.742 (3)
C4—O1	1.463 (3)	C11—C12	1.373 (3)
C4—H4A	0.9700	C11—H11	0.9300
C4—H4B	0.9700	С12—Н12	0.9300
C5—O2	1.469 (3)	O1—P1	1.5716 (16)
С5—Н5А	0.9700	O2—P1	1.5748 (16)
С5—Н5В	0.9700	O3—P1	1.4721 (18)
C6—O4	1.412 (3)	O4—H4	0.8200
C6—C7	1.505 (3)		
C3—C1—H1A	109.5	C7—C6—P1	113.47 (14)
C3—C1—H1B	109.5	O4—C6—H6	108.2
H1A—C1—H1B	109.5	С7—С6—Н6	108.2
C3—C1—H1C	109.5	Р1—С6—Н6	108.2
H1A—C1—H1C	109.5	C12—C7—C8	118.8 (2)
H1B—C1—H1C	109.5	C12—C7—C6	120.54 (19)
С3—С2—Н2А	109.5	C8—C7—C6	120.7 (2)
С3—С2—Н2В	109.5	C9—C8—C7	120.4 (2)
H2A—C2—H2B	109.5	С9—С8—Н8	119.8
C3—C2—H2C	109.5	С7—С8—Н8	119.8
H2A—C2—H2C	109.5	C10—C9—C8	119.4 (2)

H2B—C2—H2C	109.5	С10—С9—Н9		120.3
C5—C3—C4	109.08 (19)	С8—С9—Н9		120.3
C5—C3—C1	110.8 (2)	C9-C10-C11		121.5 (2)
C4—C3—C1	110.9 (2)	C9-C10-C11		119.5 (2)
C5—C3—C2	107.2 (2)	C11—C10—Cl1		119.0 (2)
C4—C3—C2	108.0 (2)	C12—C11—C10		118.9 (2)
C1—C3—C2	110.6 (2)	C12—C11—H11		120.6
O1—C4—C3	111.34 (17)	C10-C11-H11		120.6
O1—C4—H4A	109.4	C11—C12—C7		121.1 (2)
C3—C4—H4A	109.4	С11—С12—Н12		119.4
O1—C4—H4B	109.4	C7—C12—H12		119.4
C3—C4—H4B	109.4	C4—O1—P1		117.87 (14)
H4A—C4—H4B	108.0	C5—O2—P1		116.83 (14)
O2—C5—C3	111.10 (17)	С6—О4—Н4		109.5
O2—C5—H5A	109.4	O3—P1—O1		114.12 (11)
С3—С5—Н5А	109.4	O3—P1—O2		113.65 (10)
O2—C5—H5B	109.4	O1—P1—O2		105.62 (9)
С3—С5—Н5В	109.4	O3—P1—C6		113.27 (10)
H5A—C5—H5B	108.0	O1—P1—C6		105.02 (9)
O4—C6—C7	113.10 (18)	O2—P1—C6		104.20 (9)
O4—C6—P1	105.57 (15)			
C5—C3—C4—O1	-57.7 (3)	C10-C11-C12-C7		-0.6 (4)
C1—C3—C4—O1	64.7 (3)	C8—C7—C12—C11		-0.1 (3)
C2—C3—C4—O1	-173.9 (2)	C6-C7-C12-C11		178.7 (2)
C4—C3—C5—O2	58.9 (2)	C3—C4—O1—P1		54.0 (2)
C1—C3—C5—O2	-63.5 (2)	C3—C5—O2—P1		-56.2 (2)
C2—C3—C5—O2	175.7 (2)	C4—O1—P1—O3		80.51 (18)
O4—C6—C7—C12	-151.46 (19)	C4—O1—P1—O2		-45.05 (18)
P1-C6-C7-C12	88.3 (2)	C4—O1—P1—C6		-154.86 (16)
O4—C6—C7—C8	27.3 (3)	C5—O2—P1—O3		-79.99 (18)
P1C6C7C8	-92.9 (2)	C5-02-P1-01		45.86 (17)
C12—C7—C8—C9	0.5 (3)	C5—O2—P1—C6		156.25 (16)
C6—C7—C8—C9	-178.2 (2)	O4—C6—P1—O3		56.16 (18)
C7—C8—C9—C10	-0.3 (4)	C7—C6—P1—O3		-179.45 (15)
C8—C9—C10—C11	-0.4 (5)	O4-C6-P1-O1		-69.01 (15)
C8—C9—C10—Cl1	179.8 (2)	C7—C6—P1—O1		55.38 (17)
C9—C10—C11—C12	0.8 (4)	O4—C6—P1—O2		-179.83 (14)
Cl1—C10—C11—C12	-179.3 (2)	C7—C6—P1—O2		-55.44 (17)
Hydrogen-bond geometry (Å, °)				
D—H…A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O4—H4…O3 ⁱ	0.82	1.89	2.705 (3)	172

Symmetry codes: (i) -x, y-1/2, -z+1/2.

